After expanding the inequality reduces to

$$2(x^3+y^3+z^3)+x^2+y^2+z^2+3(xy^2+yz^2+zx^2) \geq 3(x^2y+y^2z+z^2x)+xy+yz+zx+6xyz.$$

Since $x^2 + y^2 + z^2 \ge xy + yz + zx$, it remains to prove that $2(x^3 + y^3 + z^3) + 3(xy^2 + yz^2 + zx^2) \ge 3(x^2y + y^2z + z^2x) + 6xyz$.

This follows again by using the AM-GM inequality properly:

$$\begin{split} &2(x^3+y^3+z^3)+3(xy^2+yz^2+zx^2)=2(x^3+xy^2)+2(y^3+yz^2)+2(z^3+zx^2)+(xy^2+yz^2+zx^2)\geq 4x^2y+4y^2z+4z^2x+(xy^2+yz^2+zx^2)=\\ &3(x^2y+y^2z+z^2x)+(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2)\geq 3(x^2y+y^2z+z^2x)+6xyz. \end{split}$$

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy; Kevin Soto Palacios, Huarmey, Perú; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.

5486: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $(x_n)_{n\geq 0}$ be the sequence defined by $x_0=0, x_1=1, x_2=1$ and $x_{n+3}=x_{n+2}+x_{n+1}+x_n+n, \ \forall n\geq 0$. Prove that the series $\sum_{n=1}^{\infty}\frac{x_n}{2^n}$ converges and find its sum.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

The recurrence sequence may be unmasked by generating functions. Let F(z) be the associated generating function. That is, $F(z) = \sum_{n=0}^{\infty} x_n z^n$. Multiplying by z^{n+3} the recurrence relation defining (x_n) and taking into account the initial values it is obtained that

 $F(z) - (z + z^{2}) = z (F(z) - z) + z^{2} F(z) + z^{3} F(z) + \frac{z^{4}}{(1 - z)^{2}}$

from where $F(z) = \frac{z(1-z)^2 + x^4}{(z-1)^2(1-z-z^2-z^3)}$.

Since F(z) converges for $|z| < \frac{1}{3} \left(\sqrt[3]{17 + 3\sqrt{33}} - \frac{2}{\sqrt[3]{17 + 3\sqrt{33}}} - 1 \right) \sim 0.5436...$, then $\sum_{n=1}^{\infty} x_n = F(1/2) = 6$

$$\sum_{n=1}^{\infty} \frac{x_n}{2^n} = F(1/2) = 6.$$

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy

Answer: 6.

Clearly x_n increases and $x_n \ge 1$.

$$\sum_{n=1}^{p} \frac{x_n}{2^n} = \frac{x_1}{2} + \frac{x_2}{4} + \sum_{n=3}^{p} \frac{x_n}{2^n} = \frac{3}{4} + \sum_{n=0}^{p-3} \frac{x_{n+3}}{2^{n+3}} =$$

$$= \frac{3}{4} + \sum_{n=0}^{p-3} \left(\underbrace{\frac{x_{n+2}}{2^{n+3}}}_{I_1} + \underbrace{\frac{x_{n+1}}{2^{n+3}}}_{I_2} + \underbrace{\frac{x_n}{2^{n+3}}}_{I_3} \right) + \sum_{n=0}^{p-3} \frac{n}{2^{n+3}} =$$

$$= \frac{3}{4} + \sum_{n=2}^{p-1} \frac{x_n}{2^{n+1}} + \sum_{n=1}^{p-2} \frac{x_n}{2^{n+2}} + \underbrace{\sum_{n=1}^{p-3} \frac{x_n}{2^{n+3}}}_{I_3} + \sum_{n=0}^{p-3} \frac{n}{2^{n+3}} =$$

$$= \frac{3}{4} + \underbrace{-\frac{1}{4}}_{I_1} + \underbrace{\sum_{n=1}^{p} \frac{x_n}{2^{n+1}}}_{I_1} - \underbrace{\frac{x_p}{2^{p+1}}}_{I_2} + \underbrace{\sum_{n=1}^{p} \frac{x_n}{2^{n+2}}}_{I_2} - \underbrace{\frac{x_{p-1}}{2^{p+1}}}_{I_2} - \underbrace{\frac{x_p}{2^{p+2}}}_{2^{p+3}} + \underbrace{\sum_{n=0}^{p-3} \frac{n}{2^{n+3}}}_{\rightarrow 1/4 \text{ as } p \to \infty}$$

It follows

$$\frac{1}{8} \sum_{n=1}^{p} \frac{x_n}{2^n} = \frac{1}{2} - \left[\frac{x_p}{2^{p+1}} + \frac{x_{p-1}}{2^{p+1}} + \frac{x_p}{2^{p+2}} + \frac{x_{p-2}}{2^{p+1}} + \frac{x_{p-1}}{2^{p+2}} \right] + \frac{1}{4}$$

Now we prove the

Lemma $x_k/2^k \to 0$.

Proof of the Lemma

First step: the sequence $x_k/2^k$ in monotonic not increasing.

$$\frac{x_{k+3}}{2^{k+3}} = \frac{x_{k+2} + x_{k+1} + x_k + k}{2^{k+3}} \le \frac{x_{k+2}}{2^{k+2}} \iff \frac{x_{k+1} + x_k + k}{2^{k+3}} \le \frac{x_{k+2}}{2^{k+3}}$$

that is

$$x_{(k-1)+2} + x_{(k-1)+1} + (k-1) + 1 \le x_{(k-1)+3}$$

and this is implied by

$$x_{(k-1)+2} + x_{(k-1)+1} + (k-1) + 1 \le x_{(k-1)+2} + x_{(k-1)+1} + x_{k-1} + (k-1) = x_{(k-1)+3}$$

via $x_{k-1} \ge 1$. The monotonicity of the sequence means that the limit L of $x_k/2^k$ does exist and moreover $0 \le L < +\infty$. If L = 0 the proof is concluded yielding

$$\lim_{p \to \infty} \frac{1}{8} \sum_{n=1}^{p} \frac{x_n}{2^n} = \frac{3}{4} \iff \sum_{n=1}^{\infty} \frac{x_n}{2^n} = 6$$

 $L \neq 0$ is impossible as shown by the following argument. We employ the Cesaro–Stolz theorem that states:

$$\lim_{k \to \infty} \frac{x_k}{2^k} = \lim_{k \to \infty} \frac{x_{k+1} - x_k}{2^{k+1} - 2^k}$$

provided that the second limit does exist. We write

$$\frac{x_{k+3} - x_{k+2}}{2^{k+3} - 2^{k+2}} = \frac{x_{k+1} + x_k + k}{2^{k+2}} = \frac{1}{2} \frac{x_{k+1}}{2^{k+1}} + \frac{1}{4} \frac{x_k}{2^k} + \frac{k}{2^{k+2}}$$

The existence of the limit $L = \lim_{k \to \infty} \frac{x_k}{2^k}$ would imply

$$L = \frac{1}{2}L + \frac{1}{4}L \implies L = 0$$

Solution 3 by Arkady Alt, San Jose, CA

For any sequence $(x_n)_{n\geq 0}$ let $T(x_n) := x_{n+3} - x_{n+2} - x_{n+1} - x_n, n \in \mathbb{N} \cup \{0\}$.

Obvious that such defined operator T (we will call it Tribonacci Operator) is linear.

Since
$$T\left(-\frac{n}{2}\right) = -\frac{n+3}{2} + \frac{n+2}{2} + \frac{n+1}{2} + \frac{n}{2} = n$$
 then denoting $u_n := x_n + \frac{n}{2}, n \in \mathbb{N} \cup \{0\}$

we obtain
$$x_n = u_n - \frac{n}{2}$$
, $n \in N \cup \{0\}$ where $T(u_n) = 0$ and,

$$u_0 = 0, u_1 = 1 + \frac{1}{2} = \frac{3}{2}, u_2 = 1 + \frac{2}{2} = 2.$$
Let (t_1) be the sequence defined by t_2

Let $(t_n)_{n\geq 0}$ be the sequence defined by $t_0=0, t_1=1, t_2=1$ and

 $T(t_n) = 0, n \in N \cup \{0\}.$

(Tribonacci Sequence). We have $t_3=2, t_4=4, t_5=7, t_6=13, t_7=24, t_8=44, ...$

Since det $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \neq 0$ then for any sequence $(x_n)_{n\geq 0}$ there is triple (c_1, c_2, c_3) of real

numbers such that $x_n = c_2 t_n + c_2 t_{n+1} + c_3 t_{n+2}$, that is sequences $(t_n)_{n \ge 0}$, $(t_{n+1})_{n \ge 0}$,

form a basis of 3-dimesion space $\ker T := \{(x_n)_{n\geq 0} \mid T(x_n) = 0, n \in \mathbb{N} \cup \{0\}\}$.

We will find representation u_n as linear combination of t_n, t_{n+1}, t_{n+2} ,

namely, $u_n = c_1 t_n + c_2 t_{n+1} + c_3 t_{n+2}, \ n \in \mathbb{N} \cup \{0\}$.

We

have $u_0 = c_1 t_0 + c_2 t_1 + c_3 t_2 \iff c_2 + c_3 = 0, u_1 = c_1 t_1 + c_2 t_2 + c_3 t_3 \iff c_1 + c_2 + 2 c_3 = \frac{3}{2}, u_2 = c_1 t_2 + c_2 t_3 + c_3 t_4 \iff c_1 + 2 c_2 + 4 c_3 = 2.$ From this system of equations we obtain $c_3 = -c_2, c_1 - c_2 = \frac{3}{2}, c_1 - 2 c_2 = 2.$ Hence, $c_1 = 1, c_2 = -\frac{1}{2}, c_3 = \frac{1}{2}$ and since $u_n = t_n - \frac{t_{n+1}}{2} + \frac{t_{n+2}}{2}$ we obtain $x_n = t_n - \frac{t_{n+1}}{2} + \frac{t_{n+2}}{2} - \frac{n}{2} = \frac{2t_n - t_{n+1} + t_{n+2} - n}{2}.$

$$u_n = t_n - \frac{t_{n+1}}{2} + \frac{t_{n+2}}{2}$$
 we obtain $x_n = t_n - \frac{t_{n+1}}{2} + \frac{t_{n+2}}{2} - \frac{n}{2} = \frac{2t_n - t_{n+1} + t_{n+2} - n}{2}$

Since radius of convergence of seies $\sum_{n=1}^{\infty} nx^{n-1}$ is 1 and $\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$

then
$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{n}{2^{n-1}} = \frac{1}{2} \frac{1}{(1-1/2)^2} = 2$$
 and, therefore, for convergency of

$$\sum_{n=1}^{\infty} \frac{x_n}{2^n}$$
 suffice to prove convergency of series
$$\sum_{n=1}^{\infty} \frac{t_n}{2^n}.$$

We can prove that using another basis of ker T which form sequences $(\alpha^n)_{n\geq 0}$, $(\beta^n)_{n\geq 0}$, $(\gamma^n)_{n\geq 0}$

where α, β, γ are roots of characteristic equation $x^3 - x^2 - x - 1 = 0$.

Substitution $x = \frac{4u+1}{3}$ in equation $x^3 - x^2 - x - 1 = 0$ give us equivalent equation

$$4u^3 - 3u = \frac{19}{8}$$

which we solve using substitution
$$u := \frac{1}{2} \left(t + \frac{1}{t} \right)$$
. Then equation $4u^3 - 3u = \frac{19}{8}$

becomes
$$4\left(\frac{1}{2}\left(t+\frac{1}{t}\right)\right)^3 - 3 \cdot \frac{1}{2}\left(t+\frac{1}{t}\right) = \frac{19}{8} \iff \frac{1}{t^3} + t^3 = \frac{19}{4}$$
. Denoting $z := t^3$

$$\frac{1}{z} + z = \frac{19}{4} \iff z = \frac{19 - 3\sqrt{33}}{8}, \frac{19 + 3\sqrt{33}}{8} \iff t^3 = \frac{19 - 3\sqrt{33}}{8}, \frac{19 + 3\sqrt{33}}{8}.$$

Since
$$\frac{19 - 3\sqrt{33}}{8} \cdot \frac{19 + 3\sqrt{33}}{8} = 1$$
 and $u = \frac{1}{2} \left(t + \frac{1}{t} \right)$ then suffices to

find
$$t^3 = \frac{19 + 3\sqrt{33}}{8}$$
.

We have
$$t = r(\cos \varphi + i \sin \varphi)$$
, where $r = \frac{\sqrt[3]{19 + 3\sqrt{33}}}{2}$ and $\varphi = \frac{2k\pi}{3}$, $k = 1, 2, 3$.

that is
$$t_k = \frac{\sqrt[3]{19 + 3\sqrt{33}}}{2}\omega^k, k = 1, 2, 3 \text{ and } \omega = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}, \omega^3 = 1.$$

Thus, denoting
$$\theta := \sqrt[3]{19 + 3\sqrt{33}}, \theta^* := \sqrt[3]{19 - 3\sqrt{33}}$$
 we obtain $\alpha = \frac{1 + \theta + \theta^*}{3}, \beta = \frac{1 + \omega\theta + \omega^2\theta^*}{3},$

$$\alpha = \frac{1 + \theta + \theta^*}{3}, \beta = \frac{1 + \omega\theta + \omega^2\theta^*}{3},$$

$$\gamma = \frac{1 + \omega^2 \theta + \omega \theta^*}{3}$$
, the three roots of the equation $x^3 - x^2 - x - 1 = 0$.

We will prove that
$$\alpha = \frac{1 + \theta + \theta^*}{3} < 2$$
.

First note that by Power Mean-Arithmetic Mean inequality

$$p := \sqrt[3]{19 + 3\sqrt{33}} + \sqrt[3]{19 - 3\sqrt{33}} < 2\sqrt[3]{\frac{19 + 3\sqrt{33} + 19 - 3\sqrt{33}}{2}} = 2\sqrt[3]{19} < 2\sqrt[3]{27} = 6.$$

Since
$$\sqrt[3]{19 + 3\sqrt{33} \cdot \sqrt[3]{19 - 3\sqrt{33}}} = \sqrt[3]{19^2 - 9 \cdot 33} = 4$$
 then

Since
$$\sqrt[3]{19+3\sqrt{33}} \cdot \sqrt[3]{19-3\sqrt{33}} = \sqrt[3]{19^2-9\cdot 33} = 4$$
 then $p^3 = 38+3\sqrt[3]{19+3\sqrt{33}} \cdot \sqrt[3]{19-3\sqrt{33}} \cdot p = 38+12p < 38+12 \cdot 6 = 110 < 125 = 5^3$. Hence, $\alpha < 2$. Also, we obtain $|\beta|$, $|\gamma| \le \frac{1+\theta+\theta^*}{3} < 2$.

Hence,
$$\alpha < 2$$
. Also, we obtain $|\beta|, |\gamma| \leq \frac{1 + \theta + \theta^*}{3} < 2$

Since series
$$\sum_{n=1}^{\infty} \left(\frac{\alpha}{2}\right)^n$$
, $\sum_{n=1}^{\infty} \left(\frac{\beta}{2}\right)^n$, $\sum_{n=1}^{\infty} \left(\frac{\gamma}{2}\right)^n$ are convergent and t_n is linear combination of

$$(\alpha^n)_{n\geq 0}, (\beta^n)_{n\geq 0}, (\gamma^n)_{n\geq 0}$$
 then series $\sum_{n=1}^{\infty} \frac{t_n}{2^n}$ convergent as well.

Now we ready to find sum of series $\sum_{n=1}^{\infty} \frac{x_n}{2^n}$.

Let
$$s_n := \sum_{k=1}^n \frac{t_n}{2^n}$$
 and $s(x) = \sum_{k=0}^n t_{n+1} x^n$. Note also that function

$$\frac{1}{1-x-x^2-x^3}$$
 generates

Tribonacci numbers. Indeed, let
$$\frac{1}{1-x-x^2-x^3} = \sum_{n=0}^{\infty} a_n x^n$$
. Then

$$\sum_{n=0}^{\infty} a_n x^n \cdot (1 - x - x^2 - x^3) = 1$$

and since
$$\sum_{n=0}^{\infty} a_n x^n \cdot (1 - x - x^2 - x^3) = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n x^{n+1} - \sum_{n=0}^{\infty} a_n x^{n+2} - \sum_{n=0}^{\infty} a_n x^{n+3} = \sum_{n=0}^{\infty} a_n x^n \cdot (1 - x - x^2 - x^3) = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n x^{n+1} - \sum_{n=0}^{\infty} a_n x^{n+2} - \sum_{n=0}^{\infty} a_n x^{n+3} = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} a_n x^{n+2} - \sum_{n=0}^{\infty} a_n x^{n+3} = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n x^n -$$

$$a_0 + (a_1 - a_0) x + (a_2 - a_1 - a_0) x^2 + \sum_{n=3}^{\infty} (a_{n+3} - a_{n+2} - a_{n+1} - a_n) x^{n+3}$$
 then $a_0 = 1, a_1 - a_0 = a_2 - a_1 - a_0 = 0$ implies $a_1 = 1, a_2 = 2$ and

$$a_0 = 1, a_1 - a_0 = a_2 - a_1 - a_0 = 0$$
 implies $a_1 = 1, a_2 = 2$ and

$$a_{n+3} - a_{n+2} - a_{n+1} - a_n = 0, n \in \mathbb{N} \cup \{0\} \text{ . Thus, } a_n = t_{n+1}, n \in \mathbb{N} \cup \{0\} \text{ and, therefore,}$$

$$\sum_{k=0}^n t_{n+1} x^n = s\left(x\right) = \frac{1}{1 - x - x^2 - x^3}. \text{ In,}$$

$$\text{particular, } \sum_{n=1}^\infty \frac{t_n}{2^n} = \frac{1}{2} \sum_{n=1}^\infty \frac{t_n}{2^{n-1}} = \frac{1}{2} s\left(\frac{1}{2}\right) = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2} - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^3} = 4.$$

$$\text{Then, } \sum_{n=1}^\infty \frac{x_n}{2^n} = \sum_{n=1}^\infty \frac{t_n}{2^n} - \sum_{n=1}^\infty \frac{t_{n+1}}{2^{n+1}} + 2 \sum_{n=1}^\infty \frac{t_{n+2}}{2^{n+2}} - \sum_{n=1}^\infty \frac{n}{2^{n+1}} = \frac{1}{2^n} \sum_{n=1}^\infty \frac{t_n}{2^n} - \sum_{n=2}^\infty \frac{t_n}{2^n} + 2 \sum_{n=3}^\infty \frac{t_n}{2^n} - \frac{1}{2} \sum_{n=1}^\infty \frac{n}{2^n} = \frac{t_n}{2^n} + 2 \sum_{n=1}^\infty \frac{t_n}{2^n} - 2 \left(\frac{t_1}{2^1} + \frac{t_2}{2^2}\right) = -\frac{1}{2} + 2 \cdot 4 - 2 \left(\frac{1}{2} + \frac{1}{4}\right) = 6.$$

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that the given series converges by first using induction to prove that $x_n < 1.95^n$ for each positive integer n. Note that this claim holds for $n \in \{1, 2, 3\}$. Given a positive integer k, if $x_n < 1.95^n$ for $n \in \{k, k+1, k+2\}$, then

$$x_{k+3} < 1.95^{k+2} + 1.95^{k+1} + 1.95^k + k = 1.95^k (6.7525) + k.$$

Thus it suffices to show that $1.95^k(6.7525) + k \le 1.95^{k+3}$, or equivalently $k \le 1.95^k(0.662375)$. This latter inequality holds for each positive integer k (using a separate induction argument). Hence $x_n < 1.95^n$ for $n \ge 1$, so for any positive integer m,

$$\sum_{n=1}^{m} \frac{x_n}{2^n} < \sum_{n=1}^{\infty} \frac{x_n}{2^n} < \sum_{n=1}^{\infty} \frac{1.95^n}{2^n} = \frac{0.975}{1 - 0.975} = 39.$$

Since its sequence of partial sums is increasing and bounded above, the given series converges.

Next, we let
$$\sum_{n=1}^{\infty} \frac{x_n}{2^n} = L$$
. Then
$$L = \frac{1}{2} + \frac{1}{4} + \sum_{n=0}^{\infty} \frac{x_{n+2} + x_{n+1} + x_n + n}{2^{n+3}} = \frac{3}{4} + \frac{1}{2} \left(L - \frac{1}{2} \right) + \frac{1}{4} L + \frac{1}{8} L + \sum_{n=0}^{\infty} \frac{n}{2^{n+3}}.$$
 Since $\sum_{n=0}^{\infty} \frac{n}{2^n} = 2$, we conclude $L = \frac{7}{8}L + \frac{1}{2} + \frac{1}{8}(2)$ and hence $L = 6$.

Also solved by Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; Albert Stadler (two solutions), Herrliberg, Switzerland; David Stone and John Hawkins, Southern Georgia University, Statesboro, GA, and the proposer.

$$Mea - Culpa$$